

7.9.7 Magnetic Fields

14 minutes

17 marks

Q1. (a) Some people wear magnetic bracelets to relieve pain.

Figure 1 shows a magnetic bracelet.

There are magnetic poles at both **A** and **B**. Part of the magnetic field pattern between **A** and **B** is shown.

Figure 1

What is the pole at A?

What is the pole at **B**?

(1)

(b) Figure 2 shows two of the lines of the magnetic field pattern of a current-carrying wire.

Figure 2

The direction of the current is reversed.

What happens to the direction of the lines in the magnetic field pattern?

(1)

- (c) Fleming's left-hand rule can be used to identify the direction of a force acting on a current-carrying wire in a magnetic field.
 - (i) Complete the labels in Figure 3.

Figure 3

(2)

- (ii) Figure 4 shows:
 - the direction of the magnetic field between a pair of magnets
 - the direction of the current in a wire in the magnetic field.

Figure 4

In which direction does the force on the wire act?

(1)

(iii) Suggest three changes that would decrease the force acting on the wire.

1

2

3

(3)

(d) **Figure 5** shows part of a moving-coil ammeter as drawn by a student.

The ammeter consists of a coil placed in a uniform magnetic field. When there is a current in the coil, the force acting on the coil causes the coil to rotate and the pointer moves across the scale.

Figure 5

(i)	The equipmen	nt has not be	en set up	correctly.

What change would make it work?	

(ii) Figure 6 shows the pointer in an ammeter when there is no current.

Figure 6

What type of error does the ammeter have?

(1)
(Total 10 marks)

(1)

Q2. A pupil wound a coil of copper wire around a glass tube and connected the wire to a battery. She placed a compass at each end of the tube and one compass beside the tube as shown.

(a) (i) Complete the diagram by drawing arrows in compasses X and Y to show the direction of the magnetic field.

2 marks

(ii) Draw an arrow in the middle of the glass tube to show the direction of the magnetic field in the glass tube.

1 mark

(iii) When the switch is opened, in which direction will the three compass needles point?

1 mark

(b) Give ${f one}$ way to reverse the magnetic field around the glass tube

1 mark

- (c) Two pieces of iron are placed inside the glass tube.
 - (i) When the switch is closed, the magnetic field is the same as in the diagram opposite. The pieces of iron become magnetised. Label the **four** poles on the pieces of iron.

1 mark'

(ii)	When the switch was closed, the pieces of iron moved. Explain why they moved.	
		1 mark
		Maximum 7 marks