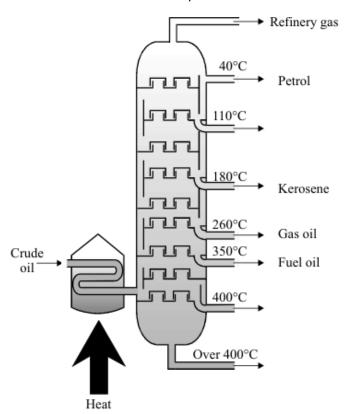
Q1. (a) Balance these chemical equations.

> H<sub>2</sub>O (i)

(1)


 $Al_{2}O_{3}$ (ii)

(1)

(b) Briefly explain why an unbalanced chemical equation cannot fully describe a reaction.

(Total 4 marks)

Q2. To make crude oil more useful it is separated into different fractions.



Complete the gaps in the following sentences. (a)

Crude oil is separated into different fractions by a process called ......

...... Each fraction has a different .......

(2)

| (b) |        | th fraction is a mixture of compounds. Most of these compounds are hydrocarb<br>de up of the elements hydrogen and carbon. | 0115,           |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | (i)    | Explain the difference between a mixture and a compound.                                                                   |                 |
|     |        |                                                                                                                            |                 |
|     |        |                                                                                                                            | (2)             |
|     | (ii)   | Explain the difference between a compound and an element.                                                                  |                 |
|     |        |                                                                                                                            |                 |
|     |        |                                                                                                                            | (2)             |
|     |        |                                                                                                                            | (Total 6 marks) |
|     |        |                                                                                                                            |                 |
| -   | The di | iagram shows an electric light bulb.                                                                                       |                 |
|     |        | gsten Argon ment                                                                                                           |                 |
|     |        |                                                                                                                            |                 |
| Whe | en ele | ctricity is passed through the tungsten filament it gets very hot and gives out lig                                        | ht.             |
| (a) | Wha    | at reaction would take place if the hot tungsten was surrounded by air?                                                    |                 |
|     |        |                                                                                                                            |                 |
|     |        |                                                                                                                            | (1)             |
|     |        |                                                                                                                            |                 |

Q3.

|     |     | strud             | cture of a              | n argor  | n atom.     |          |                     |               |                   |        |                 |              |                 |
|-----|-----|-------------------|-------------------------|----------|-------------|----------|---------------------|---------------|-------------------|--------|-----------------|--------------|-----------------|
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             | •••••    |                     |               |                   | •••••  |                 | •••••        |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 | •••••        |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 | (Total       | (3)<br>4 marks) |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 | ,            | •               |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
| Q4. |     | Titanio<br>corrod |                         | d for re | eplacem     | ent hip  | joints b            | ecause        | it has a          | ow den | sity, is str    | ong and doe  | es              |
|     |     |                   | s extracte              | d from   | titaniun    | n dioxid | e (TiO <sub>2</sub> | ) in thre     | e stages          |        |                 |              |                 |
|     | (a) | Stag              |                         |          |             |          |                     |               | (TIQ1) 1          |        |                 |              |                 |
|     |     |                   | nium diox<br>acted fron |          |             |          |                     |               |                   | ecause | the meta        | Il cannot be |                 |
|     |     | (i)               | What do                 |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     | .,                |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              | (1)             |
|     |     | (ii)              | Balance<br>chloride     |          | emical      | equation | n for the           | e conve       | rsion of t        | tanium | dioxide to      | titanium     |                 |
|     |     |                   | TiO <sub>2</sub>        | +        | $Cl_{_{2}}$ | +        | С                   | $\rightarrow$ | TiCl <sub>4</sub> | +      | CO <sub>2</sub> |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              | (1)             |
|     |     | (iii)             | Chemica                 | al equa  | itions ar   | e alway  | s balan             | ced. Ex       | plain wh          | y.     |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              |                 |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              | (1)             |
|     |     |                   |                         |          |             |          |                     |               |                   |        |                 |              | (1)             |

State why argon is used in the light bulb. Explain your answer in terms of the electronic

(b)

| (b) | reac | nium is a                              |            |               |          |        | oride by reacting it with sodium at 1000 °C in a argon gas.                                 |     |
|-----|------|----------------------------------------|------------|---------------|----------|--------|---------------------------------------------------------------------------------------------|-----|
|     | TiC  | ) <sub>4</sub> +                       | 4Na        | $\rightarrow$ | Ti       | +      | 4NaCl                                                                                       |     |
|     | (i)  | What                                   | does this  | tell you a    | about th | ne rea | ctivity of sodium compared with titanium?                                                   |     |
|     |      |                                        |            |               |          |        |                                                                                             | (1) |
|     | (ii) | Sugge                                  | st why the | e reactor     | · contai | ns arg | on and <b>not</b> air.                                                                      |     |
|     |      |                                        |            |               |          |        | (                                                                                           | (1) |
| (c) | chlo | r <b>Stage</b><br>ride with<br>diagran | n water.   |               |          |        | m the products by washing out the sodium attice of titanium metal and the lattice of sodium |     |
|     | Т    | itaniu                                 | m          |               |          |        | Sodium chloride                                                                             |     |
|     |      |                                        | ₩<br>₩—1   | itanium       | n partio | cle    | Sodium ion Chloride ion                                                                     |     |
|     | How  | do the                                 | diagrams   | show th       | at:      |        |                                                                                             |     |
|     | (i)  | titaniu                                | m is an el | ement         |          |        |                                                                                             |     |

| titanium is an element |     |
|------------------------|-----|
|                        |     |
|                        |     |
|                        |     |
|                        | (1) |

| (ii) | sodium chloride is a compound? |                        |
|------|--------------------------------|------------------------|
|      |                                |                        |
|      |                                |                        |
|      |                                |                        |
|      |                                | (2)                    |
|      |                                | (2)<br>(Total 8 marks) |

|  | Q5. Iron is | produced from | n the ore | haematite ( | (iron oxide | ١. |
|--|-------------|---------------|-----------|-------------|-------------|----|
|--|-------------|---------------|-----------|-------------|-------------|----|

Titanium is produced from the ore rutile (titanium oxide).

Iron

Iron oxide is reacted with coke (carbon) at 1500 °C in a furnace to produce molten cast iron.
Cast iron contains iron and about 4% carbon.

Oxygen is blown into molten cast iron and molten recycled iron at 1500 °C in a furnace to produce low-carbon steel.

Low-carbon steel contains iron and about 0.1% carbon.

Titanium

Titanium oxide is reacted with chlorine at 1000 °C to produce titanium chloride. Titanium chloride is cooled and collected.

Titanium chloride is reacted with magnesium at 1100 °C in a sealed reactor for 3 days.

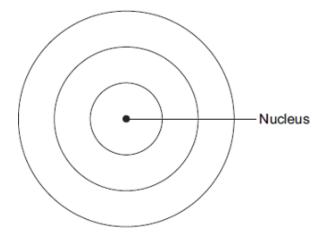
The sealed reactor contains an

The sealed reactor contains an atmosphere of argon gas.

The reactor is allowed to cool.

The reactor is opened and the titanium is separated from the other product, magnesium chloride.

(a) The production of low-carbon steel uses oxygen but the production of titanium uses argon.


| Explain why. |  |
|--------------|--|
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |
|              |  |

(3)

| Use Ma A c 2 A c | any chemical                     | flow    | eaction    | ms ab         | oove to  | help    | you 1  | to answ          | ver this ( | question.   |           |  |
|------------------|----------------------------------|---------|------------|---------------|----------|---------|--------|------------------|------------|-------------|-----------|--|
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | any chemical                     | ical re | eaction    |               |          |         |        |                  |            |             |           |  |
| A c              | chemical                         |         |            | s take        | e place  | in the  |        |                  |            |             |           |  |
| A c              | chemical                         |         |            | s take        | e place  | in the  |        |                  |            |             |           |  |
| A c              | chemical                         |         |            | s take        | e place  | in the  |        |                  |            |             |           |  |
| A c              |                                  | react   | ion in #   |               | p.a.00   |         | e pro  | ductior          | n of both  | metals.     |           |  |
| A c              |                                  |         | ווו ווו נו | he pro        | oduction | n of ii | on is  | :                |            |             |           |  |
| ٦                | $2 \operatorname{Fe_2O_3}$       | +       | 3 C        | $\rightarrow$ | 4 Fe     | +       | 3 (    | O <sub>2</sub>   |            |             |           |  |
|                  | chemical                         | react   | ion in th  | he pro        | oductio  | n of t  | itaniu | m is:            |            |             |           |  |
|                  | TiCl <sub>4</sub>                | +       | 2 Mg       | $\rightarrow$ | Ti       | +       | 2 M    | gCl <sub>2</sub> |            |             |           |  |
| Tita             | anium ca                         | n be    | used to    | prod          | luce iro | n froi  | m iro  | n oxide          | e. The cl  | hemical rea | ction is: |  |
| 2                | 2 Fe <sub>2</sub> O <sub>3</sub> | +       | 3 Ti       | $\rightarrow$ | 4 Fe     | +       | 3 7    | īO <sub>2</sub>  |            |             |           |  |
| Use              | e these tl                       | hree    | reaction   | ns an         | d the C  | hemi    | stry I | Data S           | heet to a  | answer this | question. |  |
| Su               | ggest the                        | posi    | ition of t | titaniu       | ım in th | e Re    | activi | ty Seri          | es of Me   | etals.      |           |  |
| Exp              | plain you                        | r ans   | wer.       |               |          |         |        |                  |            |             |           |  |
|                  |                                  |         |            |               |          |         |        |                  |            |             |           |  |
|                  |                                  |         |            |               |          |         |        |                  |            |             |           |  |
|                  |                                  |         |            |               |          |         |        |                  |            |             |           |  |
|                  |                                  |         |            |               |          |         |        |                  |            |             |           |  |
|                  |                                  |         |            |               |          |         |        |                  |            |             |           |  |

## **Q6.** Aluminium has many uses.

- (a) An aluminium atom has 13 electrons.
  - (i) Draw the electronic structure of an aluminium atom.



(b) Rail tracks are made from steel.

Molten iron is used to weld rail tracks.

The reaction of aluminium with iron oxide is used to produce molten iron.

(i) Balance the chemical equation for the reaction.

......Al + 
$$Fe_2O_3$$
  $\longrightarrow$  ......Fe +  $Al_2O_3$ 

(ii) Why does aluminium react with iron oxide?

(1) (Total 5 marks)

(1)