Q1.	Read the	article	and then	answer	the c	uestions
-----	----------	---------	----------	--------	-------	----------

Nanotennis!

Tennis balls contain air under pressure, which gives them their bounce. Normal tennis balls are changed at regular intervals during tennis matches because they slowly lose some of the air. This means that a large number of balls are needed for a tennis tournament.

© Feng Yu/iStock

'Nanocoated' tennis balls have a 'nanosize' layer of butyl rubber. This layer slows down the escape of air so that the ball does not lose its pressure as quickly. The 'nanocoated' tennis balls last much longer and do not need to be replaced as often.

(a) Tick (✓) the best description of a 'nanosize' layer.

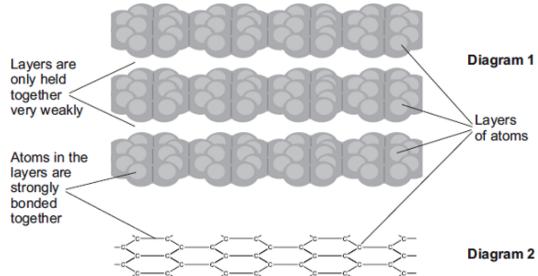
Description	Tick (✓)
A layer one atom thick.	
A layer a few hundred atoms thick.	
A layer millions of atoms thick.	

(1)

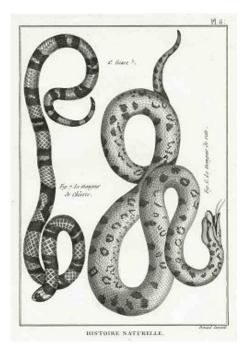
(b)	Suggest two ways in which using 'nanocoated' tennis balls would be good for the environment.

(2)

(Total 3 marks)


Q2. The picture shows a student filling in a multiple choice answer sheet using a pencil.

© Cihan Ta?k?n/iStock


The pencil contains graphite. Graphite rubs off the pencil onto the paper.

Diagrams 1 and 2 show how the atoms are arranged in graphite.

						(1) (Total 3 marks)
	covale	ent	ionic		metallic	
(b)	Draw a ring around t	he type of bond w	hich holds the ator	ms togethe	er in each layer	
						(2)
(a)	Use the diagrams to	help you explain v	vhy graphite can ru	ub off the p	encil onto the p	paper.
	30	——c; ;c—	-c: 30c:	20-		

Q3. Printed pictures can be made using etchings.

© Eduardo Jose Bernardino/iStock

An etching can be made when a sheet of brass reacts with iron chloride solution.

Brass is a mixture of two metals, copper and zinc.

(i)	A mixture of two metals is called	
,,		(1)

(ii) Draw a ring around the correct answer to complete the sentence.Copper and zinc atoms are different sizes.

This makes brass

more flexible

harder

softer

than the pure metals.

(b) Iron chloride has the formula FeCl₃

Relative atomic masses (A_r): CI = 35.5; Fe = 56.

i)	Calculate the relative formula mass $(M_{_{\rm f}})$ of iron chloride (FeCl $_{_3}$).
	Relative formula mass (<i>M</i>) of iron chloride =

(2)

		(11)	Calculate the percentage of iron in iron chloride (FeCi ₃).	
			Percentage of iron in iron chloride =% (Total 6 ma	(2) arks)
Q4.		Thern	nosoftening polymers can be used to make plastic bottles and food packaging.	
	(a)	Why	are thermosoftening polymers not suitable for storing very hot food?	
				(1)
	(b)	The	reaction to produce the polymers uses a catalyst.	
		Why	are catalysts used in chemical reactions?	
				(1)
	(c)	Com	npounds from food packaging must not get into food.	
		Gas	chromatography can be used to separate compounds in food.	
			output from the gas chromatography column can be linked to an instrument which can tify the compounds.	
		(i)	Name the instrument used to identify the compounds.	
				(1)
		(ii)	Give one reason why instrumental methods of analysis are used to identify the compounds.	
				(1)

(d)	Poly(ethene) is a thermosoftening p	olymer.				
	Poly(ethene) can be made with diffe conditions used when poly(ethene)		s. Th	e proper	ties depend on the	}
	Suggest two conditions which could	l be changed	when	poly(eth	nene) is made.	
						(0)
						(2) (Total 6 marks)
-	Γhe diagram shows a small part of the	etructure of	eilico	a diavide		
	The diagram shows a small part of the	s structure or	SIIICOI	Tuloxide	•	
		2~		Key	,	
	•	Ţ	0	Oxyger Silicon		
				Sillcon	atom	
	200)			
	•	•				
(a)	Use the diagram above to answer th	ne question.				
	Draw a ring around the correct answ	ver to comple	te ea	ch sente	nce.	
				two		
	In silicon dioxide, each silicon atom	s handed wit	h	three	oxygen atoms.	
	in silicon dioxide, each silicon atom	3 Donaea Wit			oxygen atoms.	
				four		
		ionic.				
	The bonds in silicon dioxide are	covalent.				
		metallic.				

Q5.

Page 5 of 13

(2)

(b)

© Oleksiy Mark/iStock

	Silicon dioxide is used as the inside layer of furnaces.	
	Suggest why.	
		(1)
(c)	Nanowires can be made from silicon dioxide.	

The word 'nano' means the wires are very

Draw a ring around the correct answer to complete the sentence.

brittle. thick. thin.

> (1) (Total 4 marks)

Q6. This question is about the planet Mars.

© Tristan3D/Shutterstock

(a) Mars is a red colour in the sky at night.

The red colour of Mars is because of iron oxide.

Iron oxide is an ionic compound.

Draw a ring around the correct answer to complete each sentence.

Ionic compounds are made of

giant lattices.

polymer chains.

simple molecules.

- (b) Many spacecraft have been sent to Mars. Parts of these spacecraft are made from polymers.
 - (i) Polymers that behave like shape memory alloys are used in spacecraft.

The shape memory polymers are cooled and compressed. These polymers are stored on the spacecraft until needed.

Suggest how the polymers could be made to return to their original shape.

.....

(1)

	(ii)	Thermosetting polymers are used for the tiles on the outside of spacecraft.	
		The diagram shows the structure of a thermosetting polymer.	
		Explain, in terms of structure, why some polymers are thermosetting.	
			(2)
(c)	Insti	rumental methods such as GC-MS are used to analyse substances found on Mars.	
	In G	C-MS, gas chromatography columns are linked to mass spectrometers.	
	(i)	What does gas chromatography do to the substances?	
			(1)
	(ii)	Give two reasons for using instrumental methods for analysis.	
		1	
		2	
		(Total 7 ma	(2) arks)

Q7. Humphrey Davy was a professor of chemistry.

In 1807 Humphrey Davy did an electrolysis experiment to produce potassium.

(a) (i) Humphrey Davy was the first person to produce potassium.

Draw a ring around the correct answer to complete each sentence.

Humphrey Davy's experiment to produce this new element was quickly accepted by

other scientists because he

had a lot of money.

had a lot of staff to help.

was well qualified.

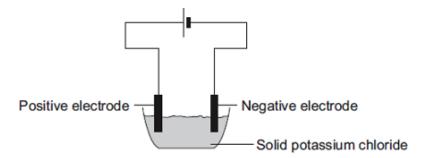
(1)

(ii) Other scientists were able to repeat Davy's experiment.

Draw a ring around the correct answer to complete each sentence.

Being able to repeat Davy's experiment is important because

other scientists can


check the results of the experiment.

see if the experiment is safe.

take the credit for the discovery.

(1)

(b) A student tried to electrolyse potassium chloride.

Potassium chloride contains potassium ions (K⁺) and chloride ions (Cl⁻).

(i) The student found that solid potassium chloride does not conduct electricity.Use the correct answer from the box to complete the sentence.

are too big	cannot move	have no charge
-------------	-------------	----------------

Solid potassium chloride does not conduct electricity because

the ions

		(ii)	What could the student do to the potassium chloride to make it conduct electricity?	
				(1)
		(iii)	During electrolysis why do potassium ions move to the negative electrode?	
				(1)
		(iv)	Draw a ring around the correct answer to complete the sentence.	
			When the potassium ions reach the negative electrode	
			atoms.	
			they turn into potassium electrodes.	
			molecules.	
			(Total 6 ma	(1) irks)
Q8.	-	This q	uestion is about lithium and sodium.	
	(a)	Use	the Chemistry Data Sheet to help you to answer this question.	
		In w	hich group of the periodic table are lithium and sodium? Group	
				(1)
	(b)	A lith	hium atom can be represented as ⁷ ₃ Li	
		The	diagram represents the lithium atom.	
		(i)	Some particles in the nucleus have a positive charge.	
			What is the name of these particles?	(4)
		(ii)	Some particles in the nucleus have no charge.	(1)
			What is the name of these particles?	(1)

Use the correct answer from the box to complete the sentence. 3 4 7 The mass number of this atom of lithium is (1) Sodium reacts with chlorine to produce sodium chloride. (c) sodium chlorine sodium chloride The diagram shows how the reaction happens. Only the outer electrons are shown. Sodium atom Chlorine atom Sodium ion Chloride ion CI CI Na Na Draw a ring around the correct answer to complete each sentence. gaining A sodium atom changes into a sodium ion by (i) losing an electron. sharing (1) a negative A sodium ion has charge. a positive (1) covalent The ions in sodium chloride are held together by strong electrostatic forces.

magnetic

(d) Sodium chloride is an ionic compound.

Tick (✓) **two** properties of ionic compounds.

Property	Tick (✓)
Do not dissolve in water	
High melting points	
Low boiling points	
Strong bonds	

				_		(2)
(e)	(i)	The formula of sodium chloride is NaCl				
		Calculate the relative formula mass of sodium chlo	ride.			
		Relative atomic masses: Na = 23; Cl = 35.5				
		Relative formula mass =				(4)
						(1)
(ii) Draw a ring around the correct answer to complete each sentence.						
			i	on		
		The relative formula mass of a substance, in grams one	i, is i	sotope	of the substance.	
			r	nole		
					1	(1)
(f)	Nar	oparticles of sodium chloride (salt) are used to flavou	ur crisps	•		
	Wha	at are nanoparticles?				
						(4)
					(Total 12 ma	(1) rks)