Q1.	Т	his question is abou	ut the structure of	of atoms.			
	(a)	Choose words from	m the list to com	plete the sente	nces below.		
		electrons	ions neutr	ons proton	s		
		In an atom, the par	ticles with a neg	gative charge ar	e called		
		Particles in the nuc	cleus with no ch	arge are called			
		An atom has no ov	erall charge be	cause is has the	e same number o	of electrons and	
							(2)
	(b)	Two isotopes of th	e element carbo	on are:			(3)
	(5)	12	14	5.1. d. 6.			
		C an					
		Complete the table		for these two isc	otones		
			ATOMIC NUMBER	MASS NUMBER	NUMBER OF PROTONS	NUMBER OF NEUTRONS	
		12 Isotope C 6	6	12	6	6	
		12 Isotope C 6	6		6		
						((2) Total 5 marks)
Q2.	т	he formula for the c	hemical compo	und magnesium	n sulphata is Mas	80	
QZ.						·	
	Calc	ulate the relative for	mula mass (M _,)	of this compou	nd. (Show your v	vorking.)	
						(Total 2 marks)

(Sho	ow your working)			
				(Total 3 m
	ms of calcium, phosphorus and flunber and proton number.	orine are represented	below, each with its m	ass
	40 31 19 🗻	mass numbers		
	Ca P F 20 15 9 ◀	proton number	s	
(a)	Use this information to complete	the table.		
()			T	
		CALCIUM	PHOSPHOROUS	FLUORINE
	Number of protons in the nucleus	20		9
	Number of neutrons in the nucleu	s 20	16	
	Number of electrons		15	9
(b)	Calcium and fluorine atoms can	combine to form the c	ompound calcium fluor	ride, CaF ₂ .
	The fluoride ion is represented b	y F⁻.		
	(i) Explain how the fluorine at	om forms a fluoride ior	ı.	
	(ii) How is the calcium ion rep	resented?		
	(ii) Them to the odicidin for rep			

Q3.

Calculate the formula mass (Mr), of the compound

calcium hydroxide, Ca $(OH)_2$.

		Com	plote the contended helpy which are chart this compound		
			plete the sentences below which are about this compound.		
		Phos	sphorus trifluoride is made up of phosphorus and fluorine		
		Thes	se are joined together by sharing pairs of to forr	n	
		phos	phorus trifluoride	(3)	
	(d)	(i)	Sodium chloride, an ionic compound, has a high melting point whereas parawax, a molecular compound, melts easily. Explain why.		
				. (2)	
		(ii)	Molten ionic compounds conduct electricity but molecular compounds are n conductors, even when liquid.	on-	
			Explain why.		
				(2) (Total 14 marks)	
Q5.	-	Γhe inf	formation on the Data Sheet will be helpful in answering this question.		
	(a)	Calc	ulate the formula mass (M _r) of the compound iron (III) oxide, Fe ₂ O ₃ .		
		(Sho	ow your working.)		
				(3)	

(c) Phosphorus and fluorine form a covalent compound, phosphorus trifluoride.

	(b)	Calculate taluminium		of iron p	roduce	d when	32g of ir	on (III) oxid	e is complet	ely redu	cea by
		The reaction	on is show	n in the	symbo	ol equati	on:				
		Fe ₂ O	+	2Al	\rightarrow	2Fe	+	Al ₂ O ₃			
		(Show you	r working.	.)							
						Answer	=		grams	3	(2)
											(3) (Total 6 marks)
Q6.	Υ	ou will find	it helpful to	o use th	e inforr	nation o	n the Da	ata Sheet w	hen answerii	ng this q	uestion
	In th										1400110111
		e nucleus of	f an alumi	nium at	om are:						accuern
		e nucleus of	f an alumi	nium ato and	13 pr	otons eutrons.					
	(a)	e nucleus of		and	13 pr 14 ne	otons					
	(a)	Complete	these ser	and itences.	13 pr 14 ne	otons eutrons.	atom is .				
	(a)	Complete (i) The	these ser mass num	and itences.	13 pr 14 ne	otons eutrons. ninium a					(2)
	(a) (b)	Complete (i) The	these ser mass num atom of a	and itences. inber of t	13 pr 14 ne he alun m there	otons eutrons. ninium a					
		Complete (i) The lin and line in an	these ser mass num atom of a	and itences. inber of t	13 pr 14 ne he alun m there	otons eutrons. ninium a					
		Complete (i) The lin and line in an	these ser mass num atom of a	and itences. inber of t	13 pr 14 ne he alun m there	otons eutrons. ninium a					
		Complete (i) The (ii) In an Why is an	these ser mass num atom of a	and atences.	13 pr 14 ne he alun m there	otons eutrons. ninium a e are	tral?				

(c) Complete the table for the element fluorine.

PARTICLE	NUMBER OF PROTONS	NUMBER OF NEUTRONS	NUMBER OF ELECTRONS
Fluorine atom	9		9
Fluoride atom		10	

(3) (Total 7 marks)

Q7.	The two carbon atoms represented below are	isotopes.
-----	--	-----------

<u>ISO1</u>	<u>ГОРЕ 1</u>	ISOTOPE 2	
	14 → mass number — C 6 → proton number —	С	
(a)	Describe two ways in which th	e isotopes are similar.	
			(2)
(b)	Describe as fully as you can o	ne way in which they are different.	()
(5)	Decombe do fany do you oan o n	ne way in which they are amorent.	
•			
•			
•			(2) (Total 4 marks)

	$NH_4CI(s)$ \rightleftharpoons $NH_3(g)$ + $HCI(g)$	
	ammonium chloride ammonia hydrogen chloride	
	e diagram shows how a teacher demonstrated this reaction. The demonstration was ried out in a fume cupboard.	
	Inverted, glass filter funnel Y X Evaporating dish Ammonium chloride HEAT	
(i)	Apart from the gases normally in the atmosphere, which two gases would be	
	at X?	
(ii)		
(ii)	at X ? and	
(ii) (iii)	at X?	
	at X?	
	nat X?	
(iii)	at X?	
(iii)	at X? and Name the white solid that has formed at Y. Why was the demonstration carried out in a fume cupboard? Complete the four spaces in the passage.	
(iii)	at X?	

a bond.

(4)

(b)	Electrons, neutrons and protons are sub-atomic particles.
-----	---

(i) Complete the **three** spaces in the table.

Name of sub-atomic particle	Relative mass	Relative charge
	1	+1
	1	0
	1 1840	– 1

(ii)	Which two sub-atomic particles are in the nucleus of an atom?	
	and	
		(1)
		(Total 10 marks)

Q9. (a) Atoms are made of sub-atomic particles. Complete the **six** spaces in the table.

Name of sub-atomic particle	Relative mass	Relative charge
	<u>1</u> 1840	
Neutron		
	1	

(b)

		(3)
Com	plete the spaces in the sentences.	
(i)	The atomic number of an atom is the number of in its	
	nucleus and is equal to the number of if the	
	atom is not charged.	(4)
(ii)	The mass number of an atom is the total number of and	(1)
(11)	in its nucleus.	
	III IIS HUCIEUS.	(1)

(2)

(c) The table gives information about the atoms of three elements.

Name of	Chemical	Numl	ber of electrons in	1:
element	symbol	1 st shell	2 nd shell	3 rd shell
Fluorine	F	2	7	0
Neon	Ne	2	8	0
Sodium	Na	2	8	1

Two of these elements can react together to form a chemical compound.

i)	What is the name and the formula of this compound?	
	Name Formula	(2)
(ii)	What type of bonding holds this compound together?	
		(1)
(iii)	Explain, in terms of electron transfer, how the bonding occurs in this compound.	
	(Total 10 m	(2) arks)

- **Q10.** Electrons, neutrons and protons are sub-atomic particles.
 - (a) Complete the **six** spaces in the following table.

Name of sub-atomic particle	Relative mass	Relative charge
	1	
		0
	<u>1</u> 1840	

		(3)
(b)	An aluminium atom has 13 electrons. How are these arranged in shells around the nucleus?	
		(1)
(c)	Chromium atoms have 24 protons and 28 neutrons.	
	(i) How many electrons does each neutral chromium atom have?	
		(1)
	(ii) What is the mass number of chromium?	
		(1)
(d)	What change occurs to an atom which undergoes the process of <i>reduction</i> in a chemical reaction?	
		(1)

(e) The diagram shows part of the ionic lattice of a sodium chloride crystal.

Explain why the ions in this lattice stay in place.

 		•••

(Total 10 marks)

- **Q11.** Ammonium chloride, NH₄Cl, is made up of nitrogen, hydrogen and chlorine atoms.
 - (i) Complete the table to show the number of atoms of each element present in NH_4CI .

Element	Number of atoms in NH₄Cl
nitrogen	1
hydrogen	
chlorine	

(1)

(ii) Calculate the relative formula mass of ammonium chloride, $NH_{_{4}}CI$.

(Relative atomic masses: H = 1, N = 14, CI = 35.5)

(2) (Total 3 marks)

- **Q12.** Ammonia is a very important chemical.
 - (a) The table shows the percentage of ammonia used to make different substances.

SUBSTANCES MADE FROM AMMONIA	PERCENTAGE (%) OF AMMONIA USED
fertilisers	75
nitric acid	10
nylon	5
others	10

Shade on the pie chart the percentage of ammonia used to make nitric acid.

(1)

	+ =	
		(1)
Nit Thi	rogen is one of the raw materials used to make ammonia. rogen is obtained from air. is pie chart shows the proportion of nitrogen, oxygen and other gases in air. bel the area which represents the proportion of nitrogen in air.	
		(1)
l) An	artificial fertiliser contains compounds with the formulae: NH₄NO₃ and KCI	
(i)	Use the Data Sheet to help you answer this question. Name the elements in the compound NH ₄ NO ₃ .	
	1	
	2	
	3	(2)
(ii)	Use the Data Sheet to help you answer this question. Name the compound KCI.	
		(1)
) (i)	Ammonium nitrate is one type of artificial fertiliser. Calculate the relative formula mass of ammonium nitrate NH ₄ NO ₃ .	
	(Relative atomic masses: H = 1, N = 14, O = 16.)	
		(1

(b) Ammonia gas is made by the reaction between nitrogen gas and hydrogen gas.

		(ii)	Use your answer to part (f)(i) to help you calculate the percentage by mass nitrogen present in ammonium nitrate NH_4NO_3 .	s of	
				 (Total 9 marks)	
Q13.		Follow	u the steps to find the percentage of iron in iron oxide.		
			comic masses: O 16; Fe 56.		
	(i)	Step	1		
		Calc	ulate the relative formula mass of iron oxide, Fe ₂ O ₃ .		
				(1)	
	(ii)	Step	2		
		Calc	ulate the total relative mass of just the iron atoms in the formula, Fe_2O_3 .		
				(1)	
	(iii)	Step	3		
		Calc	ulate the percentage (%) of iron in the iron oxide, Fe ₂ O ₃ .		
			Percentage of iron		

Q14.	-	The chemical equation for the formation of iron is:	
	Fe	$e_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$	
	Calcu	ulate the relative formula mass of iron oxide, Fe ₂ O ₃ .	
	Relat	tive atomic masses: O 16; Fe 56.	
		Relative formula mass Fe ₂ O ₃ =	
			otal 2 marks)
Q15.		There is molten rock below the Earth's solid outer crust. The rock remains molten be adioactive decay of isotopes such as uranium, thorium and potassium releases heat gy.	ecause
	(i)	Explain how this released heat energy is thought to cause the recycling of rocks.	
			(4)
			(.,

Two isoto	opes of potassium a	e shown.	
	39 K	49 19 K	
Explain v protons ir	what is meant by <i>isot</i> n your explanation.	opes. You must include numbers of electrons, neutrons and	
		(Total 8	(4) marks)
Calcium c	arbonate tablets are Calcifull T	used to treat people with calcium deficiency.	
Α	Ca		
	alcium carbonate C		
(0	Each tablet contains 1.0	25g CaCO ₃)	
Calculate	the relative formula	mass (M_r) of calcium carbonate.	
Relative	atomic masses: C =	12; O = 16; Ca = 40.	
		Relative formula mass –	

(ii)

Q16.

(a)

(2)

	(b)	Calculate the percentage of calcium in calcium carbonate, CaCO ₃ .				
		Percentage of calcium = %	(2)			
	(c)	Calculate the mass of calcium in each tablet.				
		Mass of calcium = g	(2)			
	(d)	An unwanted side effect of this medicine is that it can cause the patient to have 'wind much gas in the intestine).	d' (too			
		The equation below represents the reaction between calcium carbonate and hydrocacid (the acid present in the stomach).	hloric			
		$CaCO_{3}(s) + 2HCl(aq) \rightarrow CaCl_{2}(aq) + H_{2}O(l) + CO_{2}(g)$				
		Suggest why the patient may suffer from 'wind'.				
		(Т	(1) otal 7 marks)			
Q17.		Iron ore contains iron oxide.				
	(i)	Calculate the relative formula mass of iron oxide, Fe ₂ O ₃ .				
		Relative atomic masses: O = 16; Fe = 56.				
		Answer =	(2)			
	(ii)	Calculate the percentage by mass of iron in iron oxide.	(2)			
		Percentage of iron = %	(2)			

	(iii)	Calculate the mass of iron that could be extracted from 1000 kg of iron oxide. Use your answer to part (c) (ii) to help you with this calculation.				
		kg (Total 5	(1) marks)			
Q18.		Toothpastes often contain fluoride ions to help protect teeth from attack by bacteria. Toothpastes often contain fluoride ions to help protect teeth from attack by bacteria. The toothpastes contain tin(II) fluoride.				
		s compound has the formula SnF_2 .				
	(a)	Calculate the relative formula mass $(M_{_{\rm f}})$ of ${\rm SnF}_{_{2}}$.				
		Relative atomic masses: F = 19; Sn = 119				
	(b)	Relative formula mass $(M_{_{_{\rm f}}}) = \dots$ Calculate the percentage by mass of fluorine in SnF $_{_{_{\rm f}}}$.	(2)			
		Percentage by mass of fluorine = %	(2)			

		1.2 g of SnF ₂ .	thpaste contains	A tube of toot	(c)
	coothpaste.	in this tube of t	mass of fluorine	Calculate the	
(1)	= g	lass of fluorine	1		
	ment of a fluorine atom.	lectron arrange	represents the e	The diagram	(d)
			XX XX		
	a fluoride ion, F⁻.	an change into a	a fluorine atom c	Explain how a	
(2 <u>)</u> Total 7 marks	(
: an	en compound. The chemist carried out $(m{M}_{_{\! r}})$ of the compound.				119.
		44.	compound was	The $M_{_{\rm r}}$ of the	
		14, O = 16	nic masses: N =	Relative atom	
	und.	a of the compo	round the formu	Draw a ring a	
(1)	N ₂ O	$N_{2}O_{4}$	NO ₂	NO	

- **Q20.** This question is about oxygen atoms. The periodic table on the Data Sheet may help you to answer this question.
 - (a) (i) Oxygen atoms have 8 electrons.

Complete the diagram to represent the arrangement of electrons in an oxygen atom. Use crosses (x) to represent the electrons.

(1)

(ii) Name the part of the oxygen atom that is labelled ${\bf A}$ on the diagram.

(1)

(b) Two isotopes of oxygen are oxygen-16 and oxygen-18.

oxygen-16 oxygen-18

	Explain, in terms of particles, how the nucleus of an oxygen-18 atom is different from nucleus of an oxygen-16 atom.	ı the
		(0)
	(Т	(2) otal 4 marks)
bread	Iron is an essential part of the human diet. Iron(II) sulfate is sometimes added to white d flour to provide some of the iron in a person's diet.	;
(a)	The formula of iron(II) sulfate is FeSO ₄	
	Calculate the relative formula mass (M_r) of FeSO ₄	
	Relative atomic masses: O = 16; S = 32; Fe = 56.	
	The relative formula mass (M) =	
	,	(2)
(b)	What is the mass of one mole of iron(II) sulfate? Remember to give the unit.	

Q21.

(1)

(c)	Wha	at mass of iron(I	l) sulfate would be n	eeded to provide 28	grams of iron?	
	Rer	nember to give t	the unit.			
				······		(Total 4 mar
·.	(a) hydi	The table gives	s information about t	wo isotopes of hydro	gen, hydrogen	-1 and
			Hydrogen-1	Hydrogen-2		
	At	omic number	1	1		
	М	ass number	1	2		
(b)	(i)	(i) Calculate the relative formula mass (M_r) of water, H_2O Relative atomic masses: $H = 1$; $O = 16$.				
	(ii)	Simple molecu	ıles like water have l	ow boiling points.		
		Explain why, i	n terms of molecule	S.		

(c)	Molecules of heavy water contain two atoms of hydrogen-2 instead of two atoms of hydrogen-1.
	Explain why a molecule of heavy water has more mass than a normal water molecule. You should refer to the particles in the nucleus of the two different hydrogen atoms in your answer.
	(2) (Total 6 marks)
	(Total o marks)
Q23.	Calamine lotion is used to treat itching. The main ingredients are two metal oxides.
	Calamine Lotion
(a)	One of the metal oxides has a relative formula mass (M_r) of 81.
	The formula of this metal oxide is MO. (M is not the correct symbol for the metal.)
	The relative atomic mass (A_{r}) of oxygen is 16.
	(i) Calculate the relative atomic mass (A_{r}) of metal M.
	Relative atomic mass (A _j) =
	· •

	(ii)	Use your answer to part (a)(i) and the periodic table on the Data Sheet to name metal M.	
		The name of metal M is	(1)
(b)	The	other metal oxide is iron(III) oxide.	
	This	contains iron(III) ions (Fe ³⁺) and oxide ions (O ²⁻).	
	(i)	Explain in terms of electrons how an iron atom (Fe) can change into an iron(III) ion (Fe $^{3+}$).	
			(2)
	(ii)	The diagram below represents the electronic structure of an oxygen atom (O).	
		** * * * * * * * * * * * * * * * * * *	

Complete the diagram below to show the electronic structure of an oxide ion (O²⁻).

(1) (Total 6 marks)