Q1.		(a) The formula for the chemical compound magnesium sulphate is MgSO ₄ .	
		Calculate the relative formula mass (M _r)of this compound. (Show your working.)	
			(2)
	(b)	Magnesium sulphate can be made from magnesium and dilute sulphuric acid.	
		This is the equation for the reaction.	
		$Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$	
		Calculate the mass of magnesium sulphate that would be obtained from 4g of magnesium. (Show your working.)	
		Answer g	(0)
			(2) (Total 4 marks)
Q2.		(a) The formula for ammonia is NH ₃ . What does the formula tell you about each n of ammonia?	nolecule
			. (3)

(b)	Ammonia is used to make nitric acid (HNO ₃). Calculate the formula mass (Mr) for nitric acid. (Show your working). (3) (Total 6 marks)	
In thi	s question you will need to use the following information:	
	lative atomic masses: H 1; O 16; Mg 24.	
	e volume of one mole of any gas is 24 dm³ at room nperature and atmospheric pressure.	
The	diagram shows a chemical reaction taking place in a conical flask.	
L	Dilute hydrochloric acid Magnesium ribbon	
The	palanced equation for this reaction is:	
Mg(s) + $2HCI(aq) \rightarrow MgCI_2(aq) + H_2(g)$	
(a)	Write a balanced ionic equation for this reaction.	
(b)	Calculate the mass of magnesium required to produce 0.50 g of hydrogen. Show clearly how you work out your final answer and give the unit.)
	-	

Mass =

##

				(1)
		(ii)	What is the name of the type of chemical bond between the hydrogen atoms hydrogen molecule?	
				(1)
	(d)	The	chemical formula for hydrogen peroxide is $H_2^{\ O}_2$.	
			culate, to the nearest whole number, the percentage, by mass, of hydrogen in rogen peroxide. Show clearly how you work out your answer.	
			Percentage = %	(2) (Total 8 marks)
				,
Q4.		Quick vn be	clime can be converted to slaked lime. The equation which represents this reaction.	etion is
			$CaO_{(s)} + H_2O_{(l)} \rightarrow Ca(OH)_{2(s)}$ quickline slaked line	
	(i)	Why	y do farmers sometimes add slaked lime to acidic soil?	
				(1)
	(ii)		e these relative atomic masses: $H = 1$; $O = 16$; $Ca = 40$ alculate the relative formula mass $(M_{_{\rm f}})$ of	
		quic	klime CaO	
		slak	ed lime Ca(OH) ₂	(2)

Draw a diagram to show how the electrons are arranged in a hydrogen molecule.

(c) (i)

	(iii)	Calculate the mass of slaked lime that could be made from 1000 kg of quicklime.	
		Mass of slaked lime	
		Wass of States into	(2) (Total 5 marks)
Q5.		Use these relative atomic masses: $H = 1$; $O = 16$; $Ca = 40$ and $Ca = 40$ are local culate the relative formula mass (M_r) of	
		dime CaO	
	slake	ed lime Ca(OH) ₂	
			(Total 2 marks)
Q6.		Limestone (CaCO ₃) is a raw material. On strong heating it is converted to calcium on the calcium on t	xide
		$CaCO_3 \xrightarrow{leat} CaO + CO_2$	
	(a)	Calculate the formula mass (M _r) of calcium carbonate.	
		M _r of calcium carbonate =	. (2)
	(b)	About 60 million tonnes of calcium oxide is made in Britain each year. Calculate the mass of calcium carbonate needed to make this amount of calcium	
		Mass of calcium carbonate needed = million tonnes	(4)

(c) Water is added to some of the calcium oxide produced in a process known as 'slaking'. The product of this reaction is used to make plaster.

$$CaO_{(s)} + H_2O_{(1)} \rightarrow Ca(OH)_{2(s)}$$

(i) Give the chemical name of Ca(OH)₂.

(1)

(ii) What is the physical state of the Ca(OH)₂ formed in the reaction?

(1)
(Total 8 marks)
(Total o Illaiks)

Q7. Brine, a solution containing sodium chloride in water, can be used to manufacture chlorine, hydrogen and sodium hydroxide. A student sets up a simplified model of the industrial cell.

(a) The electron arrangements of some atoms are shown here.

	(1)	ose the relevant electron arrangements to describe the bonding in water.	
			(2)
	(ii)	Use the relevant electron arrangements to describe the bonding in sodium chl	oride.
	()		
			(0)
			(3)
(b)	Use	the atomic structures of $^{35}_{17}$ C1 and $^{37}_{17}$ C1 to explain the meaning of the term isoto	opes.
			(3)
			Total 8 marks)

Q8. The diagrams show three *isotopes* of potassium.

(i)	In what way does the atomic structure show you that they are all atoms ?	
		(1)
(ii)	Explain why these three atoms are called isotopes of potassium.	
		(3)
	C	Total 4 marks)

Q9. Uranium metal can be produced by reacting uranium hexafluoride with calcium.

$$UF_6 + 3Ca \rightarrow 3CaF_2 + U$$

(a) Describe how calcium and fluorine bond together to form calcium fluoride. The electron arrangement of each atom is shown.

Uranium has two main isotopes, 192 U and 192 U. Use these as examples to explain what meant by the word isotope.

Page 8 of 14

(4)

(c)	At th	e start of a reaction there was 174.5 g of uranium hexafluoride, UF_{ϵ} .	
	Rela	tive atomic masses: F 19; U 235	
	(i)	Calculate the relative formula mass of uranium hexafluoride, $\operatorname{UF}_{\scriptscriptstyle{6}}$.	
		Relative formula mass UF ₆ = g	(1)
	(ii)	Calculate the mass of uranium that would be produced from 134.5 g of uranium hexafluoride.	
		Mass of uranium =g	
		(Total 12 ma	(2) rks)

Q10. Aluminium is a useful metal.

(a) The atomic number (proton number) of aluminium is 13.

Complete the diagram to show the electronic structure of an aluminium atom. Use crosses (x) to represent the electrons.

(1)

(b) Aluminium is used as the electrical conductor for overhead power cables.

Explain why metals are good conductors of electricity.	
	(2)
	(Total 3 marks)

Q11. Aspirin tablets have important medical uses.

udent carried out an experiment to make aspirin. The method is given below.	
Weigh 2.00 g of salicylic acid. Add 4 cm³ of ethanoic anhydride (an excess). Add 5 drops of concentrated sulfuric acid. Warm the mixture for 15 minutes. Add ice cold water to remove the excess ethanoic anhydride. Cool the mixture until a precipitate of aspirin is formed. Collect the precipitate and wash it with cold water. The precipitate of aspirin is dried and weighed.	
The equation for this reaction is shown below. $C_7H_6O_3 + C_4H_6O_3 \rightarrow C_9H_8O_4 + CH_3COOH$ salicylic acid aspirin	
Calculate the maximum mass of aspirin that could be made from 2.00 g of salicylic acid. The relative formula mass (M_r) of salicylic acid, $C_7H_8O_3$, is 138 The relative formula mass (M_r) of aspirin, $C_9H_8O_4$, is 180	
Maximum mass of aspirin = g	(2)
The student made 1.10 g of aspirin from 2.00 g of salicylic acid.	()
Calculate the percentage yield of aspirin for this experiment. (If you did not answer part (a), assume that the maximum mass of aspirin that can be made from 2.00 g of salicylic acid is 2.50 g. This is not the correct answer to part (a).)	
Percentage yield of senirin – %	
	Weigh 2.00 g of salicylic acid. Add 4 cm³ of ethanoic anhydride (an excess). Add 5 drops of concentrated sulfuric acid. Warm the mixture for 15 minutes. Add ice cold water to remove the excess ethanoic anhydride. Cool the mixture until a precipitate of aspirin is formed. Collect the precipitate and wash it with cold water. The precipitate of aspirin is dried and weighed. The equation for this reaction is shown below. C,H,O,3 + C,H,O,3 → C,H,O,4 + CH,3COOH salicylic acid aspirin Calculate the maximum mass of aspirin that could be made from 2.00 g of salicylic acid. The relative formula mass (M,) of salicylic acid, C,H,O,₃, is 138 The relative formula mass (M,) of aspirin, C,H,O,₃, is 180 Maximum mass of aspirin =

(c) Suggest **one** possible reason why this method does **not** give the maximum amount of aspirin.

(1)

(2)

		Suggest how the use of a catalyst might reduce costs in the industrial production of aspirin.	
		(Total 6 ma	(1) arks)
Q12.		Spacecraft have been to the planets Venus and Mars. The spacecraft have sent back mation about the atmosphere of each planet.	
		© Tristan3D/Shutterstock	
	(a)	The main gas in the atmosphere of Mars is carbon dioxide.	
		Explain why, in terms of structure, carbon dioxide is a gas, even at low temperatures.	
			(3)

(d)

Concentrated sulfuric acid is a catalyst in this reaction.

(b)	Gas chromatography linked to a mass spectrometer (GC-MS) is used to identify substances found on Mars.		
	(i)	What is the purpose of gas chromatography?	
			(1)
	(ii)	What information do the molecular ion peaks from the mass spectrometer give about the substances?	
			(1)
(c)	The atmosphere on Venus contains droplets of sulfuric acid solution.		
	(i)	Suggest a pH value for sulfuric acid solution.	
		pH =	(1)
	(ii)	Name the ion which makes sulfuric acid solution acidic.	
			(1)
(d)	The atmosphere of Venus contains the isotopes ${}^{2}_{1}H$ and ${}^{1}_{1}H$		
	Describe the similarities and the differences in the isotopes $^2_{1H}$ and $^1_{1H}$		
	You should refer to the sub-atomic particles in each isotope.		
		(Total 10 ma	(3) arks)