
Q1. Hydrogen peroxide (H₂O₂) contains the same elements as water (H₂O).

(a) Name the hazard symbol shown by using the correct word from the box.

corrosive flammable oxidising toxic

(1)

(b) Hydrogen peroxide decomposes in the presence of a catalyst.

$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$$

(i) Complete the word equation for this chemical reaction.

(ii) What does a catalyst do to a chemical reaction?

(1) (Total 3 marks)

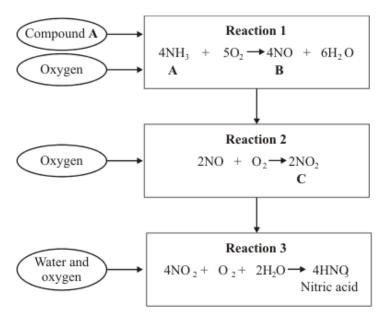
Q2. (a) You may find the Data Sheet helpful to complete the word equation.

These two gases react as shown in the balanced symbol equation.

$$2H_{_2} + O_{_2} \rightarrow 2H_{_2}O$$

Complete the word equation for this reaction.

hydrogen + →


(b) Complete this sentence by crossing out the **two** words in the box that are wrong.

This chemical reaction is much faster if a molecule if a molecule if a molecule is used.

(1)

(Total 3 marks)

Q3. (a) The flow diagram shows the stages in the production of nitric acid.

(b)

Give the names of the compounds labelled as ${\bf A},\,{\bf B}$ and ${\bf C}$ on the flow diagram. Choose names from the box.

	ammonia nitrogen nitrogen dioxide nitrogen monoxide	
Α		
В		
C		(3)
Use	the flow diagram to help you name two raw materials used to make nitric acid.	
	and	(2)

	(i)	How does a catalyst help	p trils reaction?	
	(ii)	Draw a ring around the n	name of the catalyst used in r	(1 eaction 1.
	` ,	copper iro	•	vanadium (1 (Total 7 marks
4.	This I	abel was on a bottle of stai	iin remover.	
		Simply	/ Amazing	
		Super S	Stain Remover	
		Removes stains cause	ed by grass, blood, mould etc	
		pour onto the stair the water the stroi	ing with hot water and ined areas. The hotter inger the cleaning power. rinse with water and then	
W	hen 'Si	mply Amazing' is mixed wi	ith water a reaction takes plac	ce which produces bubbles of
	ygen ga			
(i)	Sug	gest a method that you co	ould use to measure how quic	kly this reaction takes place.
(i)			ould use to measure how quic	kly this reaction takes place.

Page 3 of 25

(ii)	Read the instructions on the label and then suggest how increasing the tempera water affects the rate of this reaction.	iture of the
(iii)	Suggest one other way in which the rate of a reaction can be changed.	(1)
		 (1) (Total 4 marks)
	Pieces of zinc react with dilute acid to form hydrogen gas. graph shows how the volume of hydrogen gas produced changes with time.	
	me of gas	
	Time	

Q5.

(b) A student wants to make the reaction take place faster.

Some suggestions are given in the table.

Put ticks (v') next to the **two** suggestions that would make the reaction take place faster.

Suggestions	(v ′)
Use bigger pieces of zinc.	
Use a more concentrated acid.	
Use zinc powder.	
Decrease the temperature of the acid.	

(2) (Total 4 marks)

Q6. This label was taken from a cola drink.

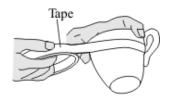
The pH of this drink is 2.5.

		chloride	hydrogen	hydroxide	sodium	(1)
	(ii)	Draw a ring around	the name of the i	on that gives the	cola drink its low pH.	
						(1)
(a)	(i)	Which one of the ir	ngredients in the	cola drink causes	the low pH?	

50	dium benzoate is made using two chemical reactions.					
	eaction 1 ethylbenzene is reacted with oxygen, with the help of a catalyst, to for	orm benzoi	c acid.			
В	eaction 2 enzoic acid is neutralised by sodium hydroxide solution to form sodi ater.	um benzoa	te and			
(i)	How does the catalyst help reaction 1 ?					
			 (1 <u>)</u>			
(11)	 (ii) Reaction 1 has a high atom economy. The table lists several statements. Put a tick (✓) next to the one statement best describes a high atom economy. 					
	best describes a night atom economy.					
	Statement	(v´)				
		(•')				
	Statement	(*)				
	Statement All the atoms used are cheap.	(*)				
	Statement All the atoms used are cheap. Most of the starting materials end up as useful products.	(v')	(1)			
(iii)	Statement All the atoms used are cheap. Most of the starting materials end up as useful products. Only a small number of atoms are used in the reaction.	(v')	(1)			
(iii	Statement All the atoms used are cheap. Most of the starting materials end up as useful products. Only a small number of atoms are used in the reaction.	(*)	(1)			
(iii	Statement All the atoms used are cheap. Most of the starting materials end up as useful products. Only a small number of atoms are used in the reaction. Reaction 2 is a neutralisation reaction.	(*)	(1)			

Q7. The following steps show how to use a type of glue.

Step 1 Measure out equal amounts of the liquids from tubes A and B.



Step 2 Mix the liquids to make the glue.

Put a thin layer of the glue onto each of the surfaces to be joined.

Step 3 Assemble the pieces to be joined and then hold them together with tape.

Step 4 Leave the glue to set.

- When liquids **A** and **B** are mixed a chemical reaction takes place.
 - (i) This reaction is exothermic.

Complete the sentence below using a word or phrase from the box.

	decrease	increase	stay the same	
Dui	ing the reaction the	temperature of t	he mixture will	

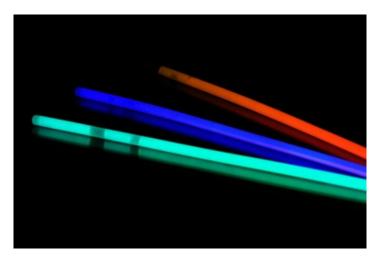
(ii) When the glue sets it forms a giant covalent structure.

Draw a fing around one property that you would expect the set gide to have.			
good conductor of electricity	low melting point	high melting point	
			(1)

(b) The time taken for the glue to set at different temperatures is given in the table below.

Temperature in °C	Time taken for the glue to set
20	3 days
60	6 hours
90	1 hour

(i) Complete the sentences below using words or phrases from the box.


	decrease	increase	stay the same
Whe	n the temperature	is increased the	time taken for the glue to se
Whe	n the temperature	is increased the	rate of the setting reaction
	,		

(ii) Put a tick (\checkmark) next to the **two** reasons why an increase in temperature affects the rate of reaction.

Reason	(v ′)
It gives the particles more energy.	
It increases the concentration of the particles.	
It increases the surface area of the particles.	
It makes the particles move faster.	

(2) (Total 6 marks)

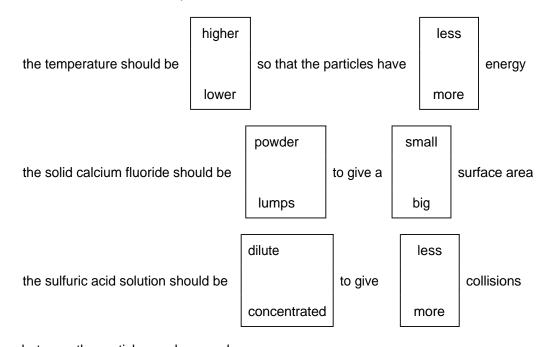
Q8. The picture shows three glowsticks.

Photograph supplied by iStockphoto/Thinktsock

Glow sticks contain several chemicals. When a glow stick is bent the chemicals mix. A chemical reaction takes place which causes light to be given out.

A student investigated three glow sticks. One was placed in water at 5 $^{\circ}$ C, one in water at 40 $^{\circ}$ C and one in water at 70 $^{\circ}$ C.

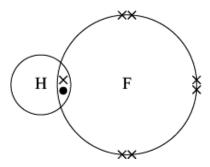
The results are shown in the table.


	Effect of	on glow stick
Temperature in °C	Brightness of light	Time it gave out light, in hours
5	dim	7
40	bright	3
70	very bright	1

		(1)
b)	How did increasing the temperature affect the time it gave out light?	
		(1)
a)	How did increasing the temperature affect the brightness of the glow stick?	

	(c)				•		in temperature of them	-		of the ch	emical
		Put t	icks (√) next	to the three o	correct ide	eas.				
						lo	deas			Ticks (√)	
				The	particles will	collide mo	re often.				
				The	particles will	be more c	oncentrated.				
				The	particles will	move fast	er.				
				The	particles will	nave more	e energy.				
				The	particles will	get bigger	•				
											(3)
	(d)	Sug	gest on	e way	the student c	ould impro	ove this investiga	tion.			
										((1) Total 6 marks)
Q9.		Hydro	gen fluo	ride is	s used to make	hydroflud	oric acid.				
	(a)				s hydrogen flu s place in a rot		eacting solid cald	cium fluc	oride wit	h sulfuric	acid.
	calciu	ım fluc	oride	+	sulfuric acid	\rightarrow	calcium sulfate	+	hydroge	en fluoride)
		The	compar	ny war	nt this reaction	to take pl	lace quickly.				
		(i)	Rotatir	ng the	kiln makes th	e reaction	take place faste	r.			
			Sugge	est wh	y.						
											(1)

(ii) Draw a ring around the correct word in each box.


To make the reaction take place faster:

between the particles each second.

(3)

(b) The diagram represents a molecule of hydrogen fluoride.

The hydrogen and fluorine atoms are joined by a covalent bond.

Use the correct word from the box to complete the sentence.

	electrons	neutrons	protons	
In a co	valent bond the atom	s share		 (4)
				(1)

(c) Hydrogen fluoride is dissolved in water to make an acidic solution of hydrofluoric acid.

Draw a ring around the symbol of the ion that makes the solution acidic.

H⁺ OH⁻ F⁻

(Total 6 marks)

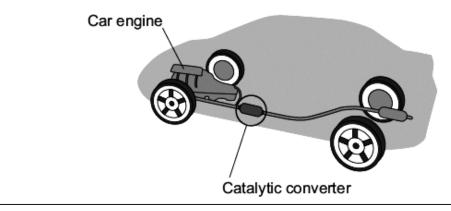
Q10. The picture shows a lump of phosphate rock.

Rob Lavinsky, iRocks.com - CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons

Phosphoric acid is made by reacting phosphate rock with sulfuric acid.

Only three of the methods shown below will increase the rate of this reaction.

Put a **tick** (\checkmark) next to each of the **three** methods that will **increase** the rate of this reaction.


Method	Tick (√)
Use a more concentrated solution of sulfuric acid	
Use larger lumps of phosphate rock	
Cool the mixture of phosphate rock and sulfuric acid	
Grind the phosphate rock into a powder before adding the acid	
Increase the temperature of the sulfuric acid	
Dilute the sulfuric acid solution with water	

Q11. Read the information about car engines.

Burning petrol in air is an exothermic reaction. This reaction is used in car engines.

When petrol burns it produces harmful substances such as nitrogen oxides and carbon monoxide.

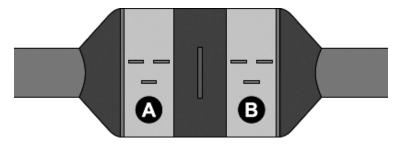
A catalytic converter stops these harmful substances being released into the air.

- (a) Draw a ring around the correct answer to complete each sentence.
 - (i) The exothermic reaction makes the temperature of the engine

decrease.

increase.

stay the same.


(1)

(ii) This is because during exothermic reactions

energy is taken in from the surroundings. energy is given out to the surroundings. there is no energy change.

(1)

(b)	The diagram shows a catalytic converter which removes harmful substances.
	The catalytic converter has two parts, A and B, which contain different catalysts.

-	(i)	The equation			1111		1 A	•
1	11	I DE EGUATION	I TOR TOP	reaction	that takes	niace in	nart A	IC.
١		THE Equation		1 Cachon	tilat tancs	piace iii	part	10.

2NO –	N_{2}	+	0
-------	---------	---	---

Which one of the substances shown in the equation is a compound?
Give the formula of this compound.

(ii) The equation for the reaction that takes place in part ${\bf B}$ is:

2CO +
$$O_2 \rightarrow 2CO_2$$

Why is it important to stop carbon monoxide (CO) from being released into the air?	

(c) The table lists some statements about catalysts. Only **two** statements are correct.

Tick (\checkmark) the **two** correct statements.

Statement	Tick (√)
A catalyst can speed up a chemical reaction.	
A catalyst is used up in a chemical reaction.	
Different reactions need different catalysts.	
A catalyst does not change the rate of a chemical reaction.	

(2)

(1)

(1)

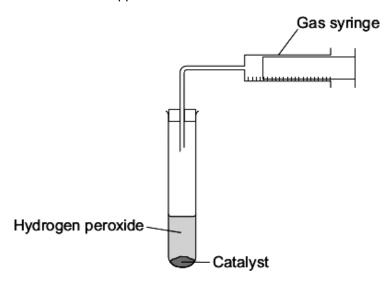
(d)			
	(i)	Complete the sentence.	
		The size of nanosized particles is than normal sized particles.	(1)
	(ii)	The catalysts contain platinum.	
	()		
		(Total 8 ma	(1) rks)
	A stu	udent investigated the reaction of magnesium with hydrochloric acid.	
(a)	A pi	ece of magnesium was dropped into the hydrochloric acid.	
	Hyd	Bubbles of gas	
		Magnesium	
	Bub	bles of gas were produced and the magnesium disappeared.	
	The	reaction is exothermic.	
	(i)	What measurements would the student make to show that the reaction is exothermic?	
			(2)
		Les (i) (ii) A stu (a) A pi Bub The	Less catalyst is needed when nanosized catalyst particles are used. (i) Complete the sentence. The size of nanosized particles is

					(1)
	affects this reactio				
		tained a different conce w the results of this expe		ıcid.	
	• • •			08000	
	Test tube A	Test tube B	Test tube C	Test tube D	
Sug	igest one control var	iable in this investigation	1		
	.9	J	!•		
					(1)
(i)		, B , C or D , contained th		 n of hydrochloric	(1)
(i)	Which test tube, A			 n of hydrochloric	(1)
(i)	Which test tube, A		ne greatest concentration	 n of hydrochloric	(1)
(i)	Which test tube, A	, B , C or D , contained th	ne greatest concentration	n of hydrochloric	
	Which test tube, A acid?	, B , C or D , contained th	ne greatest concentration	n of hydrochloric	

(d) The student predicted that if the temperature of the acid was increased the reaction would take place faster.

Tick (\checkmark) **two** statements in the table which explain why.

Statement	Tick (√)
The particles move faster	
The particles collide with less energy	
The particles collide more often	
The particles are bigger	


(2) (Total 8 marks)

Q13. (a) The symbol equation for the decomposition of hydrogen peroxide is:

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Complete the word equation for the decomposition of hydrogen peroxide.

(b) A student did an experiment to see how quickly hydrogen peroxide decomposes. The student used the apparatus shown below to measure the volume of oxygen.

(i) Draw a straight line of best fit to complete the graph. 15 10 Volume of oxygen in cm3 5 5 15 25 Time in seconds (1) (ii) Draw a circle around the anomalous point on the graph. (1) (iii) What is the volume of oxygen given off after 15 seconds? cm³ (1) How did the volume of oxygen change between 0 and 25 seconds? (1) The student wanted to make the reaction faster. Draw a ring around the correct answer to complete each sentence. higher. To make the reaction faster, the temperature should be lower. the same. (1) more dilute. (ii) To make the reaction faster, the hydrogen peroxide should be more concentrated. the same. (1)

(c)

(d) The diagram represents the bonding in oxygen.

O=O

Draw a ring around the correct answer to complete each sentence.

(i) When two oxygen atoms bond, the atoms transfer delocalise

(1)

(ii) The oxygen atoms are joined by

ionic
metallic bonds.
covalent

(1)

(iii) Oxygen is made of

simple molecules.

a giant lattice.

macromolecules.

(1)

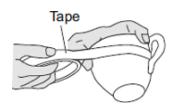
(e) When hydrogen peroxide decomposes water is produced.
Which **two** statements in the table explain why water is a liquid at room temperature?

Tick (\checkmark) the **two** statements.

Statement	Tick (√)
Water has a boiling point of 100 °C.	
Water is made of ions.	
Water has a melting point lower than room temperature.	
Water has a giant covalent structure.	

(2) (Total 12 marks) **Q14.** The following steps show how to use a type of glue.

Step 1 Measure out equal amounts of the liquids from tubes A and B.



Step 2 Mix the liquids to make the glue.

Put a thin layer of the glue onto each of the surfaces to be joined.

Step 3 Put the pieces together and hold them with tape.

Step 4 Leave the glue to set.

(a)	When liquids A	and D are	mivad a	ahamiaal	rocation	takaa plaaa
(a)	vynen ligulas A	. and B are	e mixed a	cnemical	reaction	rakes blace

This reaction is exothermic.

What does exothermic mean?)	

(b) The time taken for the glue to set at different temperatures is given in the table below.

Temperature in°C	Time taken for the glue to set
20	3 days
60	6 hours
90	1 hour

(i) Use the correct answer from the box to complete each sentence.

decreases	increases	stays the same
When the temperature is inc	creased the time taken fo	or the glue to set
When the temperature is inc	creased the rate of the se	etting reaction

(ii) Tick (\checkmark) **two** reasons why an increase in temperature affects the rate of reaction.

Reason	Tick (√)
It gives the particles more energy	
It increases the concentration of the particles	
It increases the surface area of the particles	
It makes the particles move faster	

(2) (Total 6 marks)

The s	studer	nt heated the acid.	
The student added copper oxide until no more reacted.			
(a)	The diagram shows the first stage in the experiment.		
		Copper oxide	
		Acid — Heat	
	(i)	Complete the word equation.	
		Copper oxide + acid → copper sulfate + water	(1)
	(ii)	Which one of these values could be the pH of the acid?	
		Draw a ring around the correct answer.	
		1 7 11	(1)
	(iii)	Why is the acid heated?	
			(1)
(b)	After Why	the reaction is complete, some solid copper oxide remains.	
	vviiy		
			(1)
(c)		student removed the solid copper oxide from the solution.	(1)
(c)	The		(1)
(c)	The	student removed the solid copper oxide from the solution.	(1)

A student added copper oxide to an acid to make copper sulfate.

Q15.

(d) The mass of copper sulfate crystals was less than the student expected.

Tick (\checkmark) the **one** statement that explains why the mass of copper sulfate crystals was less than expected.

Statement	Tick (✓)
Some copper sulfate may have been lost during the experiment.	
The student added too much copper oxide.	
The copper sulfate crystals were wet when they were weighed.	

(1)

		(Total 6 ma	rks)
Q16.	The	rmosoftening polymers can be used to make plastic bottles and food packaging.	
(a)	Wh	y are thermosoftening polymers not suitable for storing very hot food?	
			(1)
(b)	The	reaction to produce the polymers uses a catalyst.	
	Why	y are catalysts used in chemical reactions?	
			(1)
(c)	Con	npounds from food packaging must not get into food.	
	Gas	s chromatography can be used to separate compounds in food.	
		output from the gas chromatography column can be linked to an instrument which can tify the compounds.	
	(i)	Name the instrument used to identify the compounds.	
			(1)
	(ii)	Give one reason why instrumental methods of analysis are used to identify the compounds.	
			(1)

(d)	Poly(ethene) is a thermosoftening polymer.
	Poly(ethene) can be made with different properties. The properties depend on the conditions used when poly(ethene) is made.
	Suggest two conditions which could be changed when poly(ethene) is made.
	(2)
	(2)
	(Total 6 marks)