Q1. (a) The diagrams show the arrangement of the particles in a solid and in a gas.
Each circle represents one particle.

Gas

(i) Complete the diagram below to show the arrangement of the particles in a liquid.

Liquid

(ii) Explain, in terms of the particles, why gases are easy to compress.
\qquad
\qquad
\qquad
\qquad
(b) The diagram below shows the model that a science teacher used to show her students that there is a link between the temperature of a gas and the speed of the gas particles.

The ball-bearings represent the gas particles. Switching the motor on makes the ballbearings move around in all directions.

(i) How is the motion of the ball-bearings similar to the motion of the gas particles?
\qquad
\qquad
(ii) The faster the motor runs, the faster the ball-bearings move. Increasing the speed of the motor is like increasing the temperature of a gas.

Use the model to predict what happens to the speed of the gas particles when the temperature of a gas is increased.
\qquad
\qquad

Q2. (a) The diagrams, \mathbf{X}, \mathbf{Y} and \mathbf{Z}, show how the particles are arranged in the three states of matter.

(i) Which one of the diagrams, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, shows the arrangement of particles in a liquid?

Write the correct answer in the box.

(ii) Which one of the diagrams, \mathbf{X}, \mathbf{Y} or \mathbf{Z}, shows the arrangement of particles in a gas?

Write the correct answer in the box. \square
(b) Draw a ring around the correct answer in each box to complete each sentence.
vibrating in fixed positions.
(i) In a gas, the particles are moving randomly.
not moving.
(1)
(ii) In a solid, the forces between the particles are $\begin{aligned} & \text { stronger than } \\ & \text { equal to } \\ & \text { weaker than }\end{aligned}$ the forces between the particles in a liquid.
(c) The picture shows a puddle of water in a road, after a rain shower.

(i) During the day, the puddle of water dries up and disappears. This happens because the water particles move from the puddle into the air.

What process causes water particles to move from the puddle into the air?
Draw a ring around the correct answer.
condensation evaporation radiation
(ii) Describe one change in the weather which would cause the puddle of water to dry up faster.
\qquad
\qquad

Q3. Marbles inside a box can be used as a model for the particles in a solid, a liquid or a gas.

Use words from the box to complete the following sentences. Each word can be used once, more than once or not at all.

gas	liquid	solid

(a) The particles in a .. vibrate about fixed positions.
(b) The particles in a \qquad move at high speed in any direction.
(c) The particles in a are arranged in a pattern.

M1. (a) (i) random distribution of circles in the box with at least 50% of circles touching

> random distribution of circles occupies more than 50% of the space judged by eye
(ii) (large) gaps between particles accept particles do not touch accept particles are spread out
(so) easy to push particles closer (together) or
forces between particles are negligible / none an answer in terms of number of particles is insufficient
(b) (i) (both are) random accept a correct description of random eg unpredictable or move around freely or in all directions
they take up all the space is insufficient they are spread out is insufficient they move in straight lines is insufficient

1

1

1
(ii) (speed also) increases

M2. (a) (i) \mathbf{Z}
(ii) X
(b) (i) moving randomly
(ii) stronger than
(c) (i) evaporation
(ii) any one from:

- becomes windy
- temperature increases
accept (becomes) sunny
"the sun" alone is insufficient
- less humid

M3. (a) solid
(b) gas
(c) solid

Page 8 of 8

