Q1.		According to kinetic theory, all matter is made up of small particles. The particles are constantly moving.					
	Diagram 1 shows how the particles may be arranged in a solid.						
	Diagram 1						
	(a)	One kilogram of a gas has a much larger volume than one kilogram of a solid.					
		Use kinetic theory to explain why.					
			(4)				
	(b) Diagram 2 shows the particles in a liquid. The liquid is evaporating. Diagram 2						
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
		(i) How can you tell from Diagram 2 that the liquid is evaporating?					
			(1)				

(ii)	The temperature of the liquid in the container decreases as the liquid evaporates.	
	Use kinetic theory to explain why.	
	(3 (Total 8 marks	
	pens some of the marbles jump out of the tray.	
	ain how the tray of marbles is acting as a model for the evaporation of a liquid.	
	(2	2)

Q2.

Expla	in what hap	pens to make	the patient's	skin feel co	ld.		
The ç	graph shows	that the mol	ecules in a liq	uid do not a	III have the sa	ame speed.	
		†					
			\sim				
	Number of molecules						
	molecules						
		Slow	Average	Fac	+		
		Slow	Average		t		
			Average Speed of mol		t		
Use t	he informati	:	Speed of mol	ecules		when it evaporate	es.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.
Use t	he informati	:	Speed of mol	ecules		when it evaporate	S.

M1.		(a)	there are strong forces (of attraction) between the particles in a accept molecules / atoms for particles throughout accept bonds for forces	a solid				
			accept bonds for forces		1			
		(h	nolding) the particles close together particles in a solid are less spread out is insufficient					
					1			
		Ol						
		(holding) the particles in a fixed pattern / positions						
		bı	ut in a gas the forces between the particles are negligible accept very small / zero for negligible accept bonds for forces		1			
		90	o the particles spread out (to fill their container)					
		30	accept particles are not close together					
			gas particles are not in a fixed position is insufficient		1			
	(b)	(i)						
			accept molecules / atoms for particles throughout					
			accept particles are escaping particles are getting further apart is insufficient		1			
		(ii)	i) accept molecules / atoms for particles throughout accept speed / velocity for energy throughout					
			particles with most energy leave the (surface of the) liquid					
			accept fastest particles leave the liquid		1			
			so the mean / average energy of the remaining particles goe	es down	1			
			and the lower the average energy (of the particles) the lower (of the liquid)	r the temperature	1			
						[8]		
M2.		(a)	the marbles model / act as molecules					
		accept atoms / particles for molecules						
			nolecules leaving a liquid = evaporation					
		O I M	or narbles leaving tray = evaporation	1				

(b)	to evaporate the alcohol requires energy	1	
	this energy is taken from the skin and the skin feels cold accept heat for energy	1	
(c)	there are attractive forces between molecules	1	
	only the fastest molecules have enough energy to break away from other molecules		
	these molecules escape from the surface of the liquid	1	
	therefore the average speed / energy of the remaining molecules goes down		
	the lower the average speed / energy of molecules the	1	
	lower the temperature of the liquid	1	[9]